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Multidomain treatments are studied in order to solve the steady
compressible Euler equations using implicit time-dependent finite
volume methods on block-structured grids. Unconditionally GKS-
stable and conservative treatments are proposed for continuous
and discontinuous 1D matchings and extended to 2D patched grids.
Efficiency of the present interface conditions is demonstrated
through transonic flow calculations over single- and two-element
airfoils. © 1996 Academic Press, Inc.

1. INTRODUCTION

In computational fluid dynamics, the domain decomposition
techniqueis now widely used to deal with complex flow geome-
tries. This technique makes the distribution of the mesh points
easier, reduces the size of the algebraic problems to be solved,
and allows for an efficient use of parallel computers [22].

In the subdomains, one can use either a structured or an
unstructured mesh. Unstructured meshes generally lead to more
sophisticated and time-consuming methods per mesh point, but
they allow for optimal distribution of mesh points and are very
flexible for practical applications (see, for instance, [1, 13, 19,
21, 30]). On the other hand, structured meshes lend themselves
more easily to high accuracy and simplify the structure of the
algebraic systems. Non-body-fitted Cartesian grids have also
been studied (see, for instance, [10, 32, 33, 38]). They undoubt-
edly provide the most accurate methods for the flow regions
away from the solid boundaries, but they require a specia
treatment for the solid boundaries.

In the present paper, we study the multidomain technique
using structured body-fitted grids for calculating steady solu-
tions of hyperbolic systems of conservation laws. The equations
are solved by implicit time-dependent finite-volume methods.
At the interface of two adjacent subdomains, the solutions
are matched by some interface or matching conditions. The
difficulty hereisto define these interface conditions so that the
global approximation is spatially accurate, GKS-stable (i.e.,
stable in the sense of Gustafsson, Kreiss, and Sundstrom [18]),
conservative, and converges to a steady-state.

Previous studies of interface conditions satisfying one or
more of the above criteriafor various applications have concen-
trated mainly on explicit difference schemes. Ciment [8, 9]
studied the matching of dissipative schemes with or without
mesh refinement. Browning, Kreiss, and Oliger [6] analyzed a
mesh refinement technique with the non-dissipative leap-frog
scheme. Starius [43] considered composite-mesh methods for
accurately treating curvilinear boundaries. Oliger [34] exam-
ined a hybrid difference method in order to treat the boundary
condition for a high-order difference scheme in a stable way.
Berger considered the stability of mesh refinement in space
and time [4] and proposed a procedure to derive conservative
difference approximations at grid interfaces for one- or two-
dimensional arbitrarily overlapping grids [5]. Thuné [46] of-
fered some general stability resultsfor approximations of hyper-
bolic systems on substructured domains. Rai [41] devised a
conservative interface treatment for patched grids having a
common cell-center line. Chesshire and Henshaw [7] studied
interface conditions for composite overlapping grids with em-
phasis on the accuracy. Enander [12] analyzed the stability of
a patching procedure. Part and Sjogreen [39, 40] analyzed the
stability of Berger's conservative flux interpolation method
for the Lax—Wendroff scheme and applied the reconstruction
method to derive stable and nearly conservativeinterface condi-
tions. Steger and Benek [44] reviewed some of the advantages
and difficulties of using various composite-grid schemes. Gus-
tafsson [17] recently reported some theoretical and numerical
results about the solution of the Euler and Navier—Stokes equa-
tions on patched and overlapping grids. The matching of differ-
ent differential equations was also considered in [17].

Multidomain treatment with implicit schemes is a more dif-
ficult task because at each time step al the discrete unknowns
are spatially coupled. The key point is the choice of interface
conditions that allow for independent and stable solution of
difference equations in each subdomain. This does not seem
to have been analyzed in any depth in the past for hyperbolic
problems. Despite this, successful computations have been re-
ported. For example, Rai [42] devised an iterative procedure
at each time step to match the second-order Osher scheme using
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his patched grid technique developed in [41]. Another example
is given by Baysal, Fouladi, and Lessard [2] who applied an
implicit upwind scheme, combined with a multigrid approach
on overlapping and embedded grids. In both of the above exam-
ples, some matrix elements associated with the interface values
are dropped to zero in the implicit system to uncouple the
difference equations in each subdomain.

In the present paper, a multidomain technique is considered
for dissipative implicit schemes and various interface configu-
rations such as matchings with and without mesh refinement
and patched grids. Stable and conservative interface conditions
are proposed. The present interface conditions are inexpensive
and convenient for paralel computing. They require no grid
overlapping or iteration at each time step to be unconditionally
GKS-stable and they lead to uncoupled solution of the interior
implicit schemes. Theideafor constructing these interface con-
ditionsis simply to lag in time the interface values that depend
on the adjacent grid. This time lagging does not degrade the
stability of theinterior implicit schemes, provided it is correctly
done.! The time lagging may degrade the convergence rate for
obtaining the steady-state solution (see [52] for a convergence
study). In our present calculations, this convergence loss has
been found to be quite small (see Section 7.2).

The remainder of this paper is organized as follows. In
Section 2, the difference approximation is first formulated
for a one-dimensional hyperbolic problem on the strip —1
< X < 1 containing two subgrids and then reduced to a
convenient form for stability analysis. The GKS theory is
briefly recalled in order to analyze the stability of the interface
problem. Some important properties of dissipative difference
schemes are discussed. In order to show later on that our
interface treatment, which is stable for dissipative difference
schemes, remains sometimes, but not aways, stable for
nondissipative schemes, a class of schemes based on a linear
multistep method in time and a centred difference in space
is also briefly discussed. In Section 3, matching conditions
for several easily workable 1D interface configurations are
presented and their GKS-stability is analyzed. In Section 4,
conservation of interface conditions for nonlinear conservation
laws is addressed. First, the conservation of the interface
conditions discussed in Section 3 is anayzed by using the
Berger's conservation criterion [5]. In case of no conservation
a conservative treatment is presented. In Section 5, multidi-
mensional stability is considered and the universal artificial
stabilizing technique of Michelson [31] is discussed for
domain decomposition. In Section 6, a stable conservative
interface treatment is proposed for patched grids. The patched
grid we consider has a common cell-side line at the interface
and thus is different from the one treated by Rai [42] and
Enander [12]. Finally in Section 7, applications to the 2D
Euler equations are presented. Various external flows over

! Preliminary results of this study have been presented in [29] and heuristi-
caly extended to the Navier—Stokes equations in [23].

a NACAOQ012 airfoil and a two-element airfoil are computed
using the stable implicit multidomain technique.

2. ONE-DIMENSIONAL INTERFACE PROBLEM AND
GKS-STABILITY THEORY

In this section, we first formulate the interface problem for a
linear one-dimensional problem using general multilevel three-
point difference schemes and then state some basic results for
later stability analysis using the GKS-theory.

2.1. Formulation of the Interface Problem

We consider the linear hyperbolic system:

W+ AW, =0, —-1<x<1t>0 1)

where W(x, t) € R™ and A is a constant non-singular m X
m matrix having m real eigenvalues and a complete set of
eigenvectors. Without loss of generality, we suppose that A is
of diagonal form and partioned as A = diag(A', A"), A' > 0,
Al < 0.

The system (1) is completed by the initial condition

W(x, 0) = f(x), —1<x< 1, @

and boundary conditions

WI(—1,t) = SW'(—1,t) + g 4(t), t=0, ©)
WI(1, 1) = S'W!(L, t) + gy(t), t=0, 4

where W' and W" correspond to the partition of A and S and
S' are real rectangular matrices.

For the numerical solution of this initial-boundary value
problem, the spatial domain —1 = x = 1 is split into two
subdomains &, = [—1, 0] and &, = [0, 1]. The subdomain D,
(resp. D,) isdivided into cells of equal length A x® (resp. Ax®)
centred at x = x (resp. x*”). For the location of these cells
with respect to the interface x = 0, we assume that there is a
cell of D, and acell of D, having either a common side at the
interface (matching of first kind) or a common center at the
interface (matching of second kind). Furthermore, a matching
issaid to be continuous if Ax“ = Ax® or discontinuousif not.

For convenience, the cells are numbered from right to left
in D, and from left to right in D,. The numerical solutions in
the subdomains are denoted by

Ul~W(XY,nAt), j=0,1,..,N,+1,
VI~ WX, nAt), j=0,1,..,N,+1,

where At is the time step.
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FIG.1. (A)Continuousmatching of first kind. (B) Discontinuous matching
of first kind. (C) Continuous matching of second kind. (D) Discontinuous
matching of second kind. Symbol X: cell centersin theleft subdomain. Symbol
O: cell centers in the right subdomain.

For a matching of first kind (see Fig. 1A for continuous
matching and Fig. 1B for discontinuous matching), theinterface
is located between the cellsj = 0 and j = 1 in each subdomain
so that AxY = 1/N,, x = —(j — 1/2) AxY and Ax® =
1/N,, x® = (j — 1/2) Ax®. For a matching of second kind
(see Fig. 1C for continuous matching and Fig. 1D for discontin-
uous matching), the interface is located at the cell center j =
0in each subdomain so that Ax" = 1/(N, + 1), x = —j Ax®
and Ax® = 1/(N, + 1), x = j Ax©.

In each subdomain the problem (1)—(4) is approximated by
implicit difference schemes with 2 + stimelevels and 3 points
in space:

1
> BpUR =

2 2 COuULs, j=12..,N, (5
p=-1 =0 p=-1
&111 — E SqU" q 4 gn+1 (6)
qg=-1
=f(—x), ]=L12..,N,, @)
1
S BV =S S COvES, 1= 12N @
p=-1 q=0p=-1
Rril — 2 Sqlvn q 4 gn+1 (9)
g=-1
Vi=1(x), i=12.,N, (10)

where By, C, BY), and C{) are diagonal m X m matrices, S
and S' are rectangular matrices and s is some non-negative in-
teger.

At the interface x = 0, the two solutions are matched by an
interface condition involving 2 + s time levels and | points
in space,

s |
Ugt = > > (d§up + diivp )

q=-1p=1
|

S
Vit =3 > (dSvee + dipup),

q=-1p=1

(11)

where d{), di), ¢, and d{y are scalar coefficients.

2.2. GKS Theory Applied to the Interface Problem

The GKS-theory (Gustafsson, Kreiss, and Sundstrom [18])
is a general stahility theory for mixed initial-boundary value
problems. It is based on norma mode analysis. The normal
mode analysiswas devel oped by several authors, notably Kreiss
[25, 26], Osher [35, 36], and Gustafsson, Kreiss, and Sundstrom
[18]. Further work related to norma mode analysis has been
carried out by Osher [37] and Varah [51] for parabolic prob-
lems, by Strikwerda [45] for semidiscretized equations, and by
Michelson [31] for multidimensional strictly hyperbolic prob-
lems. Other contributions are due to Goldberg and Tadmor [14,
15] who constructed scheme-independent stability criteria for
translatory boundary conditions, and aso to Trefethen who
physicaly interpreted the GKS-theory [48] and examined new
instabilitiesin problemswith multiple boundariesand interfaces
[49, 50].

The stability of an interface problem can be analyzed by
introducing the folding trick of Ciment [8, 9]. Thistrick consists
in folding the left subdomain over the right one, thus trans-
forming the interface problem into an equivaent right half-
problem for which the GKS-theory is directly applicable. Our
special numbering in theleft subdomain (the cells are numbered
from right to left) introduces the folding trick in a natural way.

A GKS-stable approximation subjected to a small perturba-
tion remains stable, so that the stability of a multiinterface
problem follows from that of each individual interface subpro-
blem (see, for instance, [46]). Since one of the purposes of this
paper isto study the stahility of interface treatments but not that
of boundary conditions, we assume that each exterior boundary
treatment is stable and consider only the stability of the Cauchy
problem with interface defined by the initial value problems
®), (M forj=1,2, ..(x<0),and (8), (10) forj = 1, 2, ...
(x > 0) connected by interface condition (11) at x = 0. Since
this problem is in diagonal form and the interface condition
(11) involves only scalar coefficients, it is sufficient to consider
the stability of the reduced interface problem defined by the
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Cauchy problem with interface for the scalar equation w;, +
aw, = Owitha # 0. In the scalar case, (5)—(8) can bewritten as

1 s 1
2 b =2 X cu =12

12)
p=-1 q=0 p=-1
1 S 1 .
> o= > vl j=L2., (13
p=-1 q=0p=-1
and the interface condition (11) becomes
ugt = > > (diup + digup )
q=-1p=1
14
o (14)
vt = X X (dfipvp + diup ).
g=-1p=1

To analyze the GKS-stability of the reduced interface prob-
lem, we look for normal mode solutions of the form
u=2z'¢Y, vf=2%" jEN, (15)
where z € C and ¢V, ¢ are |,-solutions of the resolvent
equations obtained by inserting the normal mode solution (15)
into (12)—(13). In the present case, ¢ = «lu, and ¢ =
K\ vy, Where k, and «, are roots of the following characteristic
equations of schemes (12) and (13):

1

1
> bz =2, X cfiz" K

(16)
p=-1 =0 p=-1
1 s 1
> bPzed =D > ez b, (17)
p=-1 q=0p=-1

For any zwith |z > 1, the characteristic equation (16) has one
root |k,| < 1 (called theinner root) and oneroot |«,| > 1 (called
the outer root). The same is true for Eq. (17). For ¢V (resp.
¢ to beinl,, k, (resp. k,) should be the inner root.?2 When
|zl = 1, one or both of the roots of each characteristic equation
may have modulus equal to one. If this is the case, the inner
root for |7 = 1isdefined by continuity as the limit of the inner
root for |7 > 1 as |7 — 1 and the normal mode solution no
longer belongs to |, but is a limit of |, solutions.

A necessary and sufficient condition for the reduced interface
problem to be GKS-stable is that there are no nontrivial solu-
tions of the form (15) with |7 = 1.

If we insert the normal mode solutions (15) in the interface
condition (14), we obtain a system of two equations for u,
and vy,

2Note that if in the left subdomain the cells were numbered from left to
right, the outer root would be used in the normal mode solution for uf instead
of the inner root.

Uo
M(2) ( ) =0,
Uo

where M(2) is a complex 2 X 2 matrix. Clearly the reduced
interface problem is GKS-stable if and only if

detM(@ #0 for|lz =1

In order to check this condition for specific schemes and inter-
face conditions, one needs to have some knowledge of the root
structure of the characteristic equations in the critical case
|zl = 1. Thefollowing two lemmas provide thiskind of informa
tion for dissipative schemes (which we will use in the applica-
tions to fluid flows) and also for a wide class of non-dissipa-
tive schemes.

Lemma 1. Suppose that the subdomain difference schemes
(12) and (13) involve only two time-levels or are identical 2 If
these schemes are both dissipative (in the sense of Kreiss),
then for |7 = 1, the inner roots satisfy

(x| <1land|k,|=1) or (x|=1and|k|<1). (18)

Proof. First note that for |«,| = 1, k, # 1, wehave |7 < 1
by assumption that the scheme (12) is dissipative. Thus for
|z = 1, either |k,| < 1 or k, = 1. Similarly for |z = 1, either
|k,] < 1ork, = 1. So, it remains to prove that , and «, are
not both equal to one.

For two time-level schemes, the case k, = 1 or k, = 1 will
occur only when z = 1 because the schemes are consistent.
For z =1, it is well known that 1 is not an inner root for an
outflow boundary problem [15, Lemma 5.1]. Thus for z = 1,
we have either |«,| < 1 or |k,| < 1 because the interface is an
outflow boundary either for the left subdomain (if a > 0) or
the right subdomain (if a < 0).

For more than two level schemes, if wehad k, = k, = 1
for some z, then the outer root of (12), which is equal to 1/k,
by the assumption that the two schemes are identical, would
be equal to the inner root. That is, we would have a multiple
root x, = 1 which necessarily occurs when z = 1 by the
consistency assumption. In this case, the characteristic equation
(16) for z = 1 would read (x, — 1) = 0 which corresponds to
a difference scheme of the following form at steady state
U =ul = u):

Uj+1 - 2Uj + uj*l =0.

Clearly, this is not a consistent approximation of the steady-
state part of the exact problem. ||

%In fact, due to the particular numbering of the cells in the subdomains,
this means that the scheme (12) becomes identical to the scheme (13) when
exchanging the subscriptsj + 1 andj — 1.
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In order to reveal the importance of the dissipation assump-
tion for schemes (12)—(13), we are going to show that some
interface conditions, stable for dissipative schemes, may be-
come unstable for nondissipative schemes. This will be done
by considering the class of linear multistep methods (LMM)
studied by Beam, Warming, and Yee [3] for initial boundary
value problems. The construction of LMM follows the method
of lines. It uses a conventional centred difference to approxi-
mate the spatial derivative and then alinear multistep method
in time for solving the ordinary differential equations. Due to
the spatial approximation used, any LMM is nondissipative (at
least the Fourier modes corresponding to the wave number
¢ = 7 are undamped).

For the present subdomain problem, this class of schemes
can be written as

p(E)U! = 3muo(E)(Ulks — UfLy)
p(E)v] = —3m,0(E)(v]s — va),

where E is a shift operator in time (E¢" = ¢"1), p(E) and
o(E) denote polynomialsin E, and n, = aAt/AxY, n, = aAt/
Ax®. For instance, when p(E) = E — 1 and o(E) = E, we
recover the backward Euler scheme.

A LMM is said to be strongly A-stable if (see [3]):

(i) itis A-stable, that is, when applied to the linear test
equation

du

—= S
at AU, AEC,

its stability region contains all the left half-part of the complex
AAt plane and its stability boundary locus is tangent to the
imaginary axis only at the origin,

(i) dl roots of p(z) = 0 are inside the unit circle except
for theroot z = 1.

Lemma 2. Assume that the subdomain difference schemes
(12)—(13) are defined by the same LMM. Then:

(i) The two inner roots have opposite signs, that is, for
any z, ky, = —K,;

(i) If the LMM is strongly A-stable, then for |2 = 1 and
any odd integer |, we have the inequality 22 # k).

Proof. (i) Theinner roots k, and , respectively solve the
following characteristic equations:

p(d) - in,o (2 (KU - i) 0
K

u

p(2 + im,0(2 (KU - Kl) 0.

v

Thus k, = —«k,.

(i) Clearly, we have 22 # Kk}, for |7 > 1 by definition
of the inner roots. Now if we had 22 = «|k}, for |2 = 1, then
from k, = —«, we would get || = 1 so that ¥(k, — 1/k,)
would be purely imaginary. Thus from the characteristic equa-
tion, we would have Re(p(2)/0(2)) = 0. By assumption that
the scheme is A-stable, the stability boundary locus is tangent
to the imaginary axis only at the origin and Re(p(2)/a(2) = 0
implies p(2)/a(2) = 0; hence p(z2) = 0. Furthermore, strong
A-stability implies that p(2) = 0 has only the root z = 1 on
the unit circle. Consequently, ki, = 22 = land by k, = —k,
and the fact that | is odd we would get k¥ = —1. On the other
hand, consistency implies (1) # 0 so that if we had p(1) =
0, from the characteristic equation we would obtain x, = *=1.
This is contradictory, since we could not have both k2 = —1
and k, = *1. |

3. STABLE INTERFACE CONDITIONS FOR
ONE-DIMENSIONAL MATCHINGS

We now describe and analyze the stability of interface condi-
tions for some easily workable one-dimensional matchings.
Five situations will be considered. The first four have already
been described in Section 2.1. They have been named respec-
tively: continuous matching of first kind (Fig. 1A), continuous
matching of second kind (Fig. 1C), discontinuous matching of
first kind (Fig. 1B), and discontinuous matching of second kind
(Fig. 1D). The fifth one deals with aregular mesh overlapping.

Conservation of theseinterface conditionsfor nonlinear prob-
lems will be discussed in Section 4.

3.1 Continuous Matching of First Kind

This case often arises when the purpose of domain decompo-
sition is parallel computing. This is the simplest situation for
which an accurate interface condition can be easily obtained.
The main idea of extending an interface condition to the case
of implicit schemes, allowing for stable and uncoupled solution
of implicit difference equationsin each subdomain, is presented
here. A discussion is also presented on the importance of cor-
rectly lagging in time the interface values that depend on the
adjacent subdomain.

As there is no mesh refinement and the interface is located
at the middle of j = O and j = 1 in each subdomain (see Fig.
1A), theboundary cell j = 0in one subdomain coincides exactly
with the first interior cell j = 1 in the adjacent subdomain.

An obvious time accurate interface condition can be writ-
ten as

u8+l — UTl, UB+1 — uTl_

(19)

This interface condition has been studied by Ciment [9] for
matching different explicit multipoint difference schemes. Ac-
cording to Ciment, for any pair of dissipative difference
schemes, the interface problem with this interface condition is
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GKS-stable. Unfortunately, the condition (19) does not alow
for uncoupled multidomain calculation when the difference
equations are implicit. We therefore need to lag it in time. The
simplest choice isto define the interface condition at the actual
time step n + 1, using the solutions at the previous time step
n. This leads to the following interface condition:
vitt = uj.

n+l — n
U * =g,

(20)

The interface condition (20) is quite simple to implement and
alows for uncoupled and, thus, parallel computations. Another
simple interface condition is defined by

ntl — ,,n n+l — n+l
U " =v1, Vo =Up".

(21)

That is, we first solve the difference equation for u using
ug*t = v}, thus giving the solution uj*?; then we define v§*?
by v§*t = ul*! and solve the difference equation for v. However,
such a condition is not suitable for parallel computing.

More generally, the interface condition can be written as

uptt =1 - ")l + vl 0=sa'=1,

(22)

vit=(1-a")ul +auit, 0=a'=1

Clearly, this includes the particular interface conditions (19),
(20), and (21).
Let us now state the stability results.

ProrosiTion 1. Assume that the difference schemes (12)—
(13) involve two time levels or are identical. If these schemes
are dissipative, then the reduced problem with interface condi-
tion (22) is GKS-stable.

Proof. The determinant of the associated matrix M(2) for
the condition (22) is found to be

detM(2) = 22 — k[0t + 1 — @'][za® + 1 — a'].

This determinant is different from zero for |z > 1, because
|,] < 1and|x,| < 1for|4 > 1 and, according to Lemma 1,
it is also different from zero in the critical case|Z = 1 because
of the inequalities (18). Therefore, the problem is stable. ||

Although dissipation of the difference schemes is sufficient
here for the reduced problem to be stable, it is not necessary.
To see that, we consider only the interface condition (20).

ProrosiTion 2. Assume that the difference schemes (12)—
(13) are defined by the same linear multistep method. If these
schemes are strongly A-stable, then the reduced problem with
interface condition defined by (20) is GKS-stable.

Proof. Here we have

detM(2) = 22 — kyk,.

Using LemmaZ2, one can check that det M(2) # Ofor |4 =1. |

In practice, condition (22) is difficult to apply for 0 < o¥ =
1and 0 < o® = 1. It requires some iterative method. Here,
since we are interested in steady-state flow computations, we
will only implement the time-inaccurate condition (20) corre-
sponding to " = 0 and o’ = 0. To enhance thetime accuracy of
the matching, it may be interesting to define some intermediate
condition between (19) and (20) by using a different matching
on the right-hand (explicit) and left-hand (implicit) sides of the
schemes, that is, by lagging in time the interface values only
at the time level n + 1 so that the interface condition can
be written:

ontheRHS

(23)
ontheLHS.

n+l — 5,n ntl — n
U " =01,00 = U1

Thisiseasily feasible, but the stability of (23) is not guaranteed.
The GK S-stability theory does not apply directly to condition
(23) because it does not have the same form at each time level.
The original GKS-theory has been developed for boundary
conditions which are translatory in time but not necessarily in
space (for boundary conditions which are tranglatory in time
and space, scheme-independent stability critera have been de-
veloped by Goldberg and Tadmor [15]). We thereforeintroduce
a shift technique to make the condition (23) translatory in time.
It consists of combining the interface condition (23) and the
specific difference schemes to obtain a condition at the point
j = 1. In other words, we view the approximation as if the
interior schemes were applied from j = 2 and the interface
conditiondefinedat j = linstead ] = 0. Theequivalent interface
condition depends thus on the specific interior schemes and a
numerical study of stability using the automatic analysis of
Thuné [47] has shown that it is often unstable even for dissipa-
tive difference schemes.

Thus, although the interface condition (20) is quite simple,
attention needs to be paid to itsimplementation, since it should
not be reduced to the condition (23).

3.2 Continuous Matching of Second Kind

Thisinterface configuration has been shown in Fig. 1C. Here
we discuss only a nonconservative treatment, which will be
applied in Section 8 to demonstrate the importance of conserva-
tion. A conservative treatment will be discussed in Section 4.2.
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The interface values ul*! and vj** are here defined by aver-
aging

ugtt = (Uit + v¥)/2

(24)
vt = (VI + uf)/2,
where
uf = (1 — a")ul + otui*?, O=a'=1,
(29)
v =(1-a)v]+ v, 0=a"=1

Condition (24) is nonconservative even for a' = o’ = 1.

ProrosiTion 3. Assume that the difference schemes (12)—
(13) involvetwo levelsintime or areidentical. If these schemes
are dissipative, then the reduced problem with the nonconser -
vative interface condition (24) is GKSstable.

Proof. For condition (24), we have

detM(2) = (2 — k)2 — k)22

— ki [za" + (1 — a)][ze’ + (1 — )]

which isdifferent from zero for al |7 = 1, according to Lemma
1. This proves the stability. ||

We show below that dissipation is not necessary for stability.

ProrosiTioN 4. Assume that the difference schemes (12)—
(13) are defined by the same linear multistep method. If these
schemes are Cauchy stable, then the reduced problem with the
nonconservative interface condition (24) is GKS-stable.

Proof. Consider only thecase a® = a® = 0. If we assume
det M(2) = 0, we will get

z2=*ik/V(2— k)2 + k)

as k, = —k,, according to Lemma 2. Thus |2 < 1 for all
|| = 1 and the problem is stable. I

3.3. Discontinuous Matching of First Kind

If the grid continuity across the interface is not imposed,
grid construction becomes relatively easier in each subdomain.
Thus we now study interface treatment with mesh refinement
as shown in Fig. 1B.

The following condition has been discussed by Browning,
Kreiss, and Oliger [6], using the explicit leap-frog scheme in
each subdomain:

(U + Ug)/2 = (™ + V)2

(26)
(Ug*t — U /AXY = (L1 — VTY)/AXD),
The condition suitable for implicit schemes reads
(ug*t + uF)/2 = (Vi + vt)/2
(27)

(ugtt — uF)/Axt = — (V5 — v})/Ax,

where uf and vt are defined by (25).

In Section 4.2, we will use the Lax—Wendroff scheme to
show how to easily make this interface condition conservative
for nonlinear problems.

ProrosiTioN 5. Assume that the difference schemes (12)—
(13) have two levelsin time or are identical. If these schemes
aredissipative, then the reduced problem with interface condi-
tion (27) is GKS-stable.

Proof. Indeed, if we had det M(2) = O for some |7 = 1,
we would get

XD = —rCY, (28)
wherer = AxYW/Ax® and

X=z—[za"+ (1 - a Kk, Y=2z+[za"+ (1— a")]k,

C=z-[z"+(1—-a")]k,, D=z+[za"+ (11— a")]k,.

By Lemma 1, we have either YD # 0 or XC # 0 for any z
with |2 = 1. Without loss of generality, we can consider only
the case YD # 0. Then from (28), we deduce

XY/|Y]2= —rCD/|DJ,

where the overbar denotes the complex conjugate. Here the
real parts of XY and CD are

RXY) = |22 — [[za* + (1 — )] k2
M(CD) = |22 — |[zo* + (1 — )] k.2

Using Lemma 1 and the condition 0 = ", @’ = 1, we obtain
R(XY) >0, R(CD)=0

or
RXY)=0, NR(CD)>0.

Therefore for |z = 1, condition (28) cannot be satisfied; that

is, the hypothesis det M(2) = 0 does not hold and the interface
problem with the condition (27) is stable. |
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3.4. Discontinuous Matching of Second Kind

Here we extend the second kind continuous matching to the
case of mesh refinement (see Fig. 1D). Again a conservative
interface condition can be easily constructed and this will be
presented in Section 4.2. Here we analyze a honconservative
treatment obtained by using a linear interpolation,

ug't = cui't + (1 - c)vt
(29)

vgt = cui™ + (1 -c)uf,

withc, = 1/(1 + r), ¢, = r/(1 + r) and uf, v¥ are defined
by (25).

ProrosiTion 6. Assume that the difference schemes (12)—
(13) involvetwo levelsintime or areidentical. If these schemes
are dissipative, then the reduced problem with the interface
condition (29) is GKS-stable.

Proof. The determinant of M(2) is

detM@ = 2L+ 1 — k)L + 1 — «,)

— kuk[za" + (1 — a)][ze® + (1 — &Y)].

As|l+r1r —k)L+rt—k))>1for|k =1 |k =1
and min(|x|, |,|) < 1, thus Lemma 1 implies that det M(2) #
0 for |4 = 1, showing stability. ||

3.5. Matching with Grid Overlapping

When thetwo subgrids arbitrarily overlap, then someinterpo-
lation procedure is needed to construct interface conditions
(see, for instance, [5, 7, 17, 39, 44]). It can be easily proved
that when the interior difference schemes are dissipative, then
an interface condition obtained by any interpolation formula
with positive coefficients is stable (for instance, this has been
proved in [39] for the explicit Lax—Wendroff scheme). The
situation is different for nondissipative schemes. To prove this,
consider the case of aregular overlapping so that the interface
condition is defined by

ugtt=of, v§t=u,

(30)

where | is the number of mesh points contained in the overlap.

ProrosiTion 7. Assume the difference schemes (12)—(13)
are defined by the same linear multistep method. If this method
is strongly A-stable, then the reduced problem with interface
condition (30) is GKS-stable if | is odd and not GKS-stable if
| is even.

Proof. For the interface condition (30), we get det M(2) =
72 — ki) . If | is odd, stability follows easily from Lemma 2.
For z= 1, we have either k, = —k, = 10r x, = —k, = —1;

thus det M(2) = 0 if | is even and the problem is not GKS-
stable. ||

On overlapping grids, the steady state solutions may not be
unique; see [53].

4. CONSERVATIVE TREATMENT OF ONE-DIMENSIONAL
INTERFACE PROBLEMS

Since we are interested in computing transonic flows with
shocks and other discontinuities, it is important to ensure con-
servation at gridinterfaces. In[5], Berger derived aconservation
criterionfor ageneral gridinterface. Herewe apply thiscriterion
to check the conservation of our interface conditions for nonlin-
ear conservation laws. In case of nonconservation, we present
another easily workableinterface condition for implicit schemes
which is conservative and remains stable.

The analysisis based on the nonlinear hyperbolic conserva-
tion law,

w;, + h(w), = 0,
approximated by schemes in conservation form,

Ut —ul = oY(fie —fiw), J=1,

(31)
(32)

ot = v = =0 (G — Gow), =1,
where o = At/AxY, ¢® = At/AX®, and f1y,, Qi1 are
consistent approximations of the exact flux function h(w) in
the left and right subdomains. Due to the particular numbering
of the cdlls in the left subdomain, the right-hand sides of (31)
and (32) have opposite signs. Schemes (31)—(32) are assumed
to reduce to (12)—(13) when h(w) = aw, a being a constant.

4.1. Conservation Analysis of Interface Conditions

Any interface condition discussed in Section 3 can be written
in the condensed form

ug™t = Ry(ui™, uf, v¥)
(33)

g™ =R I, vt ut),

where uf and vt are defined by (25).

Berger’s conservation criterion can be described as follows.
In the case of a Cauchy problem without interface, conservation
of the difference scheme can be expressed by stating that the
following quantity is conserved in time:

S'= > Axw]. (34)

j=—

When thereis an interface, a similar quantity can be defined
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which can be split into three parts accounting for the contribu-
tions from the left and right subdomains and the interface:

= SBU + SBU + Sinnterface- (35)

If S™! = S for any n, the interface treatment is conservative.
In this case, if the numerical solution of the interface problem
is convergent, it converges to a weak solution of the exact
problem; i.e, it allows for a correct shock capturing. For the
present problem, the condition S"*! = S" for any n ensures
continuity of the numerical flux at each interface.

Inany case, the quantity S" should be aconsistent approxima-
tion to the integral [ io wdx of the exact solution w. When
approximating this integral by the mid-point formula, we find
(inthe case of discontinuous matchings, we have assumed Ax®/
Ax® = 2 in order to simplify the notations):

* Continuous matching of first kind (AxW = Ax® = Ax),

S'=> Axul + > Axol

j=2 j=2 (36)
+ 3Ax(U§ + vY) + 3AX(v§ + ul)
* Discontinuous matching of first kind,
S'= > AxOur + > AxWp!
=2 j=3
+ 5 AxOU] + 5 AXU[U§ + 5 (v] + V)] (37)

+ 3 AXO(v§ + ul)

* Continuous matching of second kind (Ax® = Ax® = AX),

S =D Axul + > Axvl + 3 Ax(ug + v) (38)
j=1 j=1
* Discontinuous matching of second kind,
S'= > AxOur + > Axp!
j=1 j=2
+ 1 AxOUB + 3 AXU(Uf + vp) (39

+ 1 AxO(u§ + v).

Introducing the corresponding interface conditions into these
guantities and using the schemes (31) and (32) we easily obtain:

ProrosiTion 8. Assume that in the interface conditions
o' = 1 and «* = 1. Then the interface problem with the
interface condition (22) is conservative and those with the
interface conditions (24), (27), and (29) are not conservative.

j+2 j+1 j -1
| | | |

FIG. 2. Nonuniform grid.

4.2. Conservative Treatment for Various Interface
Configurations

We have just shown that among the first four interface con-
figurationsstudied in Section 3, only thefirst interface treatment
is conservative. Thus we need to construct a conservative inter-
face condition for the second, third, and fourth interface con-
figurations. The fifth configuration has been studied in detail
for explicit schemes in [5] and will not be considered here for
implicit schemes.

We first consider the interface condition (27) for the discon-
tinuous matching of the first kind and use the Lax—Wendroff
scheme written on a nonuniform grid to show how to easily
make this condition conservative without changing its stability
property. At the end of this section we will make conservative
the continuous and discontinuous matchings of the second kind
by transforming them to the first kind.

On anonuniform grid (shown on Fig. 2), the Lax—Wendroff
scheme can be written as

Wt —w! = —gi(hi — iy,
where the numerical flux h;,y, is given by
N2 = (1 = 6)h(W]) + Gh(w}y)
= % 03412 AW 1) (N(W] 1) — h(w)))

with a3 = AUAX, Wiy, = (1 — W + Wy, G =
0] = 1/(1 + I‘j), I’j = AXH;l/AXJ

Instead of considering the matching configuration shown in

Fig. 1B, we will move each interface cell j = 0 to the position

of j = 1inthe adjacent subdomain so that the interface configu-
ration becomes as shown in Fig. 3, and we apply the interface

=0
u
2 110
el x| x| 5l
T T I
0 12

7
Vi

|

FIG. 3. Discontinuous matching of first kind: nonuniform grid approach.
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condition (22) asif there were no mesh refinement. In this way
the interface problem is redefined by the schemes in conserva
tive form (31)—(32) with the numerical fluxes,
(1 - O(U)h(ujn) + G(U)h(qu)

+ 30 M AUl 1) (h(u1) — h(u))

]+ZIJ2

(40)
G+12= (1 — 6")h(w]) + 6h(v}:)
— 30 AL ) (M) — h©))),
and the interface condition,
ustl = (1 — o)} + avlt @)

vt = (1 - a")ui + atult.

The corresponding quantity S" reduces to

=D AxOu + > Ax@pn

j=2 j=2

+ 3AXO(U§ + vf) + 3AXY(VE + vY)

which conservesintimewhen o™ = a® = 1. Thustheinterface
problem defined by the above nonumform grid approach in the
interior points and the interface condition (41) for the interface
of Fig. 3 is conservative at steady state.

Furthermore, it can be easily shown that this interface prob-
lem is linearly equivalent to the one defined by the uniform
grid approach at the interior points and the interface condition
(27) for the interface of Fig. 1B, which has been proved to be
linearly stable in Section 3.3. In consequence, we have:

ProrosiTion 9. The interface problem based on the Lax—
Wendroff scheme written on a nonuniform grid (31), (32), (40)
and the interface condition (41) with o' = « = 1isconserva-
tive and linearly GKS-stable.

In our applications, we have used an implicit scheme of
Lax—Wendroff type. For this scheme we can easily show that
Proposition 9 remains valid. For other three-point schemes
similar results can be easily obtained.

Let us finaly consider the continuous and discontinuous
matchings of the second kind. To make them conservative, we
transform them into matchings of the first kind by introducing
a third mesh near the interface. This mesh involves only one
interior point and two interface points (see Fig. 4A for the
continuous case and Fig. 4B for the discontinuous case).

In the continuous case, the interface condition is defined by

ugtl = (1 — o)W + a™wi™l, O0=a"=1,
(42)

vt =(1—a" Wi+ a"wit, O0=av=1,

A
x=0
U}L‘ | l2|1|%|
{ !1|2| T v
[
[wf |
\_I_L_rfhe third grid
B
x=0
2 1 t)
u;-’ _
Lxl sl x| x| gk
T T T TTTTId VP

l
[TT
| 012
I
[

|_0|_1J_7| The third grid

FIG. 4. Transformation of matchings of second kind into matchings of
first kind by adding a third grid: (A) continuous matching; (B) discontinu-
ous matching.

wherew?}*!isthe solution of another difference equation defined
on the third mesh, using the interface conditions

wil= (1 - aY)uf + qul™, O0=a'=1,

(43)

witl= (1 - )]+ awi*l, 0=a'=1.
It can be easily verified that this treatment is conservative if
o' = o' = " = 1. Thisisatwo-interface problem, each being
(linearly) GKS-stable. However, the stability of each interface
does not necessarily ensure the stability of the global problem
as shown in [50]. In the present situation, stable behaviour has
been observed in al our applications.

The interface condition for the discontinuous case is defined
in the following way. As in the continuous case, the matching
is reduced to a discontinuous matching of first kind between
theleft subdomain and the third grid, plus another discontinuous
matching of the first kind between the third grid and the right
subdomain. For each of these two matchings, we use a nonuni-
form grid approach as discussed above for the interior schemes
and an interface condition similar to (41) so that the approxima-
tion is conservative if o' = o’ = " =

4.3. Conservation at Steady State

Above we discussed the conservation for the time-accurate case
o' = o® = 1. Here we consider the conservation at steady
state. An approximation is said to be conservative at steady
stateif it isaconvergent solution of atime-dependent conserva-
tive treatment or equivalently the numerical flux is continuous
across any cell face at steady state.

Clearly, the steady-state solutions of the interface problems
do not depend on the parameters «" and «®. Therefore, the
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various matchings will be conservative at steady state for any
values of these parameters, provided they are conservative for
o' = o’ = 1. So we obtain:

ProrosiTion 10. Consider the general case 0 = o' = 1
and 0 = o’ = 1. Then the continuous matching of first kind
with the interface condition (22), the discontinous matching of
first kind with the condition (41), and the matching of second
kind with the condition (42)—(43) are all conservative at
steady state.

5. STABILITY OF MULTIDIMENSIONAL
INTERFACE PROBLEMS

Michelson [31] has extended the one-dimensional GKS-sta-
bility theory to multidimensional problems for strictly hyper-
bolic systems approximated by dissipative schemes. The stabil-
ity analysis is not as simple as in the one-dimensional case
because generally we cannot diagonalize a multidimensional
hyperbolic system. To overcome this difficulty, Michelson also
proposed atechniqueto stabilize any multidimensional problem
when it is stable in the one-dimensional case. In this section,
we first recall briefly how to analyze the stability of a multidi-
mensional interface problem. Then we show that we can get
stability results only for particular cases such as a scalar equa-
tion. Finally we show how to efficiently extend the stabilizing
technique of Michelson to multidomain treatment.

5.1. Formulation

Asin the one-dimensional case, we assume that all the exte-
rior boundary treatments are stable; thus we only need to con-
sider a Cauchy problem with an interface at x, = 0, for the
hyperbolic system

d
W+ AW, + 22 AW, =0, (44)

where W(x, t) € R™ X = (X, X) € R, X = (X, .., Xg), t €
R*,and A, r = 1, ..., d, are constant m X m matrices such
that A, is nonsingular and, for any unit vector » = (1) € RY,
the matrix Ef':l v, A, has mreal eigenvalues and a complete set
of elgenvectors. We also assume that all these eigenvalues are
distinct; i.e., (44) is strictly hyperbolic.

System (44) is approximated by a difference scheme in the
left half-space x; < 0 and a difference scheme in the right half-
space x; > 0 and some condition is prescribed at the interface
x1 = 0. Denote the solutions of the difference equation for
X, < 0 by U] ;. and those of the difference equation for x, >
Oby V] ;., wheretheinteger j; isrelative to x; and the multiinte-
ger j_to x..

To analyze the stability, we Fourier-transform the corre-
sponding difference equations with respect to x. and obtain
expressions of the form

1 s 1
& el PN
> BPUp =2 > CRors,

j]_: 1, 2, reey (45)
p=-1 g=0 p=-1
i s 1 R .
2 BPVIG =2 X CRVIg, i=12.. (46)
p=-1 q=0 p=-1

The dual variable of x_ will be denoted by &..
The normal mode solutions of (45) and (46) then take the
form

m
O =2, 0,u, =200, @)
r=1

where k, = k(2 &) and k, = K, (z §) withv = 1, .., m
are the inner roots of the characteristic equations of (45) and
(46), ©, and O, with » = 1,2, ..., mare linearly independent
vector coefficients, and u,, v, with v = 1,2, ..., mare unknowns
(scalar) to be determined by the interface conditions. As the
schemes involve only three points in each space direction and
thesystemisstrictly hyperbolic, al theroots k, , k, aredistinct.
From Lemma 1, we have the obvious result:

Lemma 3. For anypair (k, = Ky, Ky = KUU) withv=1,2, ...,
mand |£| = Vd — 17, Lemma 1 is valid.

5.2. Sability Analysis

We present astability analysisonly for the continuous match-
ing of first kind. The Fourier transform of the multidimensional
interface condition reads:

Oprt = 1- a”)\?? + VP, O0=a'=1,
. . . (48)
Vift=(1-a" ) U]+ Ui, O=a'=1.

Introduction of the genera solutions (47) into the condition
(48) yields

rv=m r=m
ZE 0,u,=(za'+ (1 - aY) 2 K, 0, v,
=1 v=1

v=m

v=m
Zz 0,v,=(za"+ (1 - aY) E Ky, 04 U,
r=1 v=1

which can be rewritten as
M@ (uy, ..., Uy, U1, oy U)' = 0

with the partitioned matrix:

F. G
M(2) = [G E ]
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The block-elements of the matrix M(2) are defined by F, =
z0,, F, = z0,,
=(za"+1-a"O,A, G, =(@2za'+1-a)B,A,,

where 0, = (0, 0, .., 0,),0, = (0,,0,,..,0,), A,
A, are diagonal matrices With diagonal elements: A, = «y,
v=12 .,mA}A =k, =1, 2, ..., m. The matrices F,
and G, are non5| ngular smce the fundamental solutions are
linearly independent.

Clearly, the determinant of M(2) will not vanish if the same
holds for the matrix:

— FJleF;l]

M'(2) =M o
= @[0 -

| 0
B [GuFul | — GuFulc;UFUl]'

Now we have det M’ = det(l — G,F;'G,F,}). If O, = O,
which, occurs, for instance, when m = 1 or when all the Jaco-
bian matrices A, i = 1, 2, ..., d commute, then
det M’ = det(l — z2AA,), z#0.
Using Lemma 3, we find that det M’(2) # 0 for all |7 = 1 and
al |&] = Vd — 1x; that is, the multidimensiona problem is
stable.
If ®, # 0,, we cannot get any conclusion for the stability.

5.3. A Universal Sabilizing Technique

In general we do not know whether a problem, stable in the
one-dimensional case, remains stable in the multidimensional
case. We could examine the eigenvalue problem numerically
as done by Thuné [47] for initial boundary value problems
without internal interface. Here, we shall rather rediscuss the
universal stabilizing technique of Michelson [31] to maintain
the stability of a multidimensional interface problem when it
is stable in the one-dimensional case, that is when it is stable
for £ = 0. Michelson proposed this technique originally for
multidimensional problem without interface. In the present in-
terface problem, it consists of adding a numerical dissipation
in the tangent direction for both the difference schemes and
the interface conditions. That is, in the difference schemes,
Ul and V] ; are replaced by

(I = KoMAU? |, (I — Ko(XAOV]

J1J '
and in the interface conditions, Uj ; and V] ; are replaced by

(I—KAHUD . and (I — KA)V] .

Here K isa scalar constant, k is a positive integer such that 2k
be equal to or dlightly greater than the order of accuracy of the
difference schemes in order to maintain the global accuracy of
the interface approximation, w(X) is a cutoff function which is
equa to one near the interface x = 0 and decreases to zero
apart from it, and A; is a discrete Laplacian operator on R%*
defined by

d
= 22 E+ET=2) Ediy= Py 1oy

Michelson proved that if the one-dimensional problem isstable,
then for any k there is aways a constant K, such that the
multidimensional problem is stable for K > K,.

Here we show that for particular interface conditions, the
stabilizing technique can be simplified. Suppose that the inter-
face condition without dissipation can be written as

DuuU ntl — Duuvn+1
(49)
D, Vi = DUl
Then the interface condition with dissipation is
uuU n+l __ Akunﬂ qunH
(50)
vavn+l KAk Vn+1 DUUU n+l

The corresponding matrix M(2) is given by

Bv
wa=V& ]

B, nA

where n = 1 + K2¢ E?ZZ (1 — cos &)X For convenience, we
denote Q(z, £) = B,A'B,AL

ProrosiTioN 11.  Suppose that no dissipation is added in
the interior difference schemes and the problem with interface
condition (49) is stable for £ = 0. If p(Q(z 0))= 1 for |7 =
1, then there exists a constant K > 0 such that the problem
with interface condition (50) is stable for |£| = Vd — 17

Proof. Thedeterminant det M(z, £) isnonzeroif and only if

det (172l — Q) # 0.

Asp(Q(z 0)) = Lforall |7 = 1, we can choose K large enough
to have

7>p(Q) V|é|=Vd-—17, £ +#0,

so that det (92l — Q) # 0 and thusdet M # O for all |2 = 1
and al |£] < Vd— 17.
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ji=3
j=2

j=2
=1

i=1

Vij V2,5 V3,

u3,j Uz,j Uij

Interface x=0

FIG. 5. Patched grid without mesh refinement.

For continuous matchings of the first and second kinds, the
condition p(Q(z, 0))= 1lissatisfied for all |7 = 1; thus without
modifying theinterior difference schemes we can ensure stabil-
ity by using the interface condition (50).

I'n our subsequent applications, we have never found amulti-
dimensiona instability; thus the stabilizing technique has not
been used.

6. A CONSERVATIVE INTERFACE TREATMENT FOR 2D
PATCHED GRIDS

In the so-called patched grids, like the one shown in Fig. 5,
the two subdomains share a common grid line at the interface
but there is no grid continuity across the interface. The use of
patched grids makes the construction of the mesh of geometri-
cally complex problems a relatively easy task. The key point
with these grids is to define stable and conservative interface
conditions.

Ral [42] devised a one-sided flux interpolation method to
ensure conservation for a patched grid having a common cell-
center line at the interface. The interface condition for one
subdomain is defined from the conservative variables while for
the adjacent subdomain the interface condition is defined from
the numerical flux. This can be considered as a particular case
of the flux interpolation method of Berger [5]. However, we
are not able to obtain general stahility results for Rai’ s method.
Here we present adifferent interface condition which is conser-
vative and unconditionally stable for dissipative difference
schemes. Instead of having a common cell-center line, our
patched grid technique has acommon cell-side line. In the one-
dimensional case, this is the matching of first kind (Fig. 1A).
Wewill discusstheinterface treatment only for the case without
mesh refinement. When there is a mesh refinement in the direc-
tion normal to the interface, we write the difference schemes
on anonuniform grid (as explained in Section 4.2) to make the
interface treatment conservative. The case of mesh refinement
in the tangent direction can be included in a direct way.

The present treatment consists in computing the numerical
flux for each interface divided segment and summing them to

jHl

j+1

1=1 1=2

FIG. 6. Patched grid. The interface cell (0, j) of the left subdomain is
formed by the corners A, A’, B’, and B. This cell is divided into two parts by
the cell-side line CD of the right subdomain.

get the total numerical flux for each cell face at the interface.
It does not involve any flux interpolation. Furthermore, it is
done in such a way that the interface condition is linearly
equivalent to the one obtained by area-weighted interpolation
and thus is linearly stable.

Let us detail the interface condition for a two-dimensional
grid patching. For each subdomain, there is a line of boundary
cellslocated in the adjacent subdomain. Consider the boundary
cell of the left subdomain defined by the indexesi = 0 and |
(see Fig. 6). The corners of this cell are denoted by A, A’, B’
and B. The cell face AB lying at the interface x = O is divided
into parts AC and CB by the line CD which separates the cells
(4,j) and (1, j + 1) of the right subdomain.

Suppose that the x-direction numerical flux at any interior
face (i + 3, j) is of the form

S

firwnj = z 6L f, (U7, utky;),

o=-1

where the 6 denote constant coefficients. Then the numerical
flux on the line AB for the left subdomain is computed as:

fioj = fac + fes (51)

fac =05 >, OV, (U7, v (52)
o=-1

fie = (1 — ag) > OWF,(ul;%, v15%1Y), (53)

o=-1

where o; = |AC|/|AB].
For the right subdomain, if the x-direction numerical flux at
any interior face (i + %, j) is

S
O+12j = z 6099, (vl vie))

o=-1
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Jj+1

JHL

i=2

FIG. 7. Patched grid. The interface cell (0, j) of the right subdomain is
formed by the corners E, E’, F’, and F. This cell is divided into two parts by
the cell-side line HG of the left subdomain.

then the numerical flux on the line EF (Fig. 7) is computed by

Oz = Oec 1+ Qor (54)

Ges = B D, 0Vg, (v ul” ) (55)
o=-1

O = (L - B) X 699,17 uli%h), (56)

o=-1

where 8, = |EGJ/[EF.

ProrosiTion 12.  The problemdefined by any pair of conser-
vative three-point (in each space direction) difference schemes
and the interface condition (51)—(56) is conservative at steady
state. Furthermore, it is linearly GKS-stable for any pair of
scalar three-point dissipative difference schemeswhich involve
two time levels or are identical.

Proof. Conservation is obvious. Stability follows from the
fact that this interface condition is linearly equivalent to

Uaj = C(U?J’l + (1 — 0[)1)2]&1
vh; = Bulit + (1 — B)uljh

for which the determinant

FIG. 8. A 95 X 25 grid for the upper half part of the NACA 0012 airfail
(partia view).

Convergence curves. M=0.85,Inc.=0,CFL=9
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FIG.9. Convergence historiesfor single domain and multidomain compu-
tations. M. = 0.85 and CFL = 9. Ris the l,-residual on the density equation.

detM(z &) =7 — [a + (1 — )€4][B + (1 — B)€] kuk,

isnonzero for |4 = 1and |£| = 7. |

The above interface condition has been formulated on a
Cartesian mesh but its extension to a curvilinear mesh is
straightforward.

7. APPLICATIONS

We present here multidomain calculations of external flows
over the NACA 0012 airfoil and a two-element airfoil using
the compressible Euler equations. These test cases have been
chosen for their sensitivity to the accuracy of the numerica
treatments.

7.1. Implicit Euler Solver

Present calculations are based on the two-dimensional Eu-
ler equations

w; + f(w), + g(w), = 0 (57)
with
p
pu
VV::
pv
pE
pu pv
puz+p puu
f(w) = , =
(w) U g(w) 0?4 p
(PE +pju (pE + p)v

and, assuming a perfect gas law,
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IAY

FIG. 10. Pressure contours for M., = 0.85, CFL = 9: Left, single domain; Right, multidomain (continuous matching of the first kind).

p=(y — Dp[E — 3(u* + v?)],

where p, p, U, v, and E denote the density, the pressure, the
velocity Cartesian components, and the total energy and y =
1.4 is the specific heat ratio.

System (57) is approximated by the following implicit cen-
tred scheme of second-order accuracy [28], which isafactored
implicit version of a Lax—Wendroff-type approximation,

AW 1p) = —AUSLTIAX + a2 89/ AY) 112,

~

firvag = [(maf)" + 3(paA)" AW 112
AW jyp = — At(uapo 8y FIAX + S,9IAY)Y 1
Gjevz = [(1429)" + 3(12B)" AR 1
AW = —At(8,TIAX + 8FIAY),
AW — H(AUA XS (A28, (AWH)];; = Awe®
Aw;j — 3(At/AY)28[ (w2B")?6(AW)] i = AW,

Wi = wi) + Aw,

where A = df(w)/dw and B = dg(w)/dw are the Jacobian
matrices, &, usfor s = 1, 2 are spatial operators such that for
¢,; defined at the mesh point x = i Axandy = j Ay,

(6:9)i; = Divrzj — b1z
(020)ij = bijerz — bij-12
(19)ij = 3(dDiv12j + Diov))
(m29)ij = 2(drjsv2 + Bij-v2).

If the matrices A and B commute, the above scheme is always
linearly stable in L, and dissipative, except when A or B is
singular. It involves 3 X 3 points at level n and leads to the
solution of block-tridiagonal linear systems. For the Euler equa-
tions, for which A and B do not commute, this scheme has a
large stability domain. It is always stable for Mach numbers
lower than 0.8 or greater than 2.4 and conditionally stable in
between with a stability limit depending on the fluid velocity
direction. This stability constraint is due to the ADI factoriza-
tion of the implicit treatment and can be removed by using a
line-relaxation technique. See [11, 24] for details.

The above scheme has been implemented on a structured
mesh by using a multidomain finite-volume formulation. On a
rigid wall, the dlip condition is prescribed and the pressure is
obtained from a linear combination of the discrete form of the
x and y-momentum eguations to obtain a conservative approxi-
mation of the normal momentum equation. On an external
boundary, we prescribe the freestream direction and the entropy
and enthal py for asubsonicinflow, or the pressurefor asubsonic
outflow. Due to its own dissipative properties, this scheme is
used without artificial viscosity as in [28].
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FIG. 11. Patched grids for the upper haf part of the NACA 0012 airfoil (partia view): Left, first interface position; Right, second interface position.
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FIG. 12. Pressure contours (Ap = 0.05) for M., = 0.85, CFL = 9, computed using patched grids: Left, first interface position (located in the supersonic

region); Right, second interface position (aligned with the shock).

7.2. Comparison between Multidomain and Single Domain
Calculations

To make a direct comparison between single domain and
multidomain computations, we first calculate the flow over the
upper half of the NACA 0012 airfoil at zero angle of attack,
using symmetry boundary conditions on the symmetry line.
The mesh for the single domain computation is displayed in
Fig. 8. Continuous grids and patched grids will be considered.

We first compute the flow at Mach number M., = 0.85 using
two subdomains with grid continuity; that is, the mesh is cut
at some vertical mesh lineto form two subdomains for multido-
main calculations. The interface crosses the supersonic pocket
(see Fig. 10). We apply here the continuous matching of the
first kind with the interface condition (20). The convergence
histories for the single- and two-domain computations using
the same CFL number (CFL = 9) are shown in Fig. 9. We see
the multidomain calculation converges as well as the single
domain calculation although the interface condition has been
lagged in time.

We then compute the same flow using patched grids. Two
interface positions are tested. In the first one the interface
crossesthe supersonic pocket and inthe second oneitispartially
aligned with the shock. The corresponding patched grids are
showninFig. 11. The pressure contoursfor both of theinterface
positions are displayed in Fig. 12.

Comparison of the convergence historiesfor single and bido-
main calculations with patched grids is presented in Fig. 13.
When the interface crosses the supersonic flow region, the
convergence of the patched grid technique is only dlightly de-
layed, in comparison with the single domain computation.
When the interface is aligned with the shock, the number of
time iterations required to reach the zero-machine convergence
isincreased by 15% with respect to the single domain calcula
tion. From the pressure contours we see that there is very
little difference between the single domain solution and the
multidomain solutions with patched grids. Asthe grid is highly
discontinous across the interface in patched grid computation,
we cannot expect perfect continuity of pressure contours, even
though the interface condition is quite accurate, because in our

graphic code we have an interpolation different from the one
used in the interface conditions.

7.3. Various Multidomain Computations of a Transonic Flow
over a NACA0012 Airfail

We now compute a transonic flow at Mach number M., =
0.85 and angle of attack « = 1° over the NACA 0012 airfoil
using different multidomain techniques. In each case, we have
used CFL = 9.

The first technique is based on the C-mesh shown in Fig.
14. The airfoil is represented by a cell-center line. The two
ends of this line join at the trailing edge to form a double-
defined line (Fig. 15A) which is considered as an interface.
Thus, we define a single domain computation, where one part
of the domain is matched to another part of the same domain.
Clearly, the matching at theinterfaceis continuous of the second
kind. A simple averaging is applied at the interface, that is, the
nonconservative interface condition (24) with o = o = 0.
In the second technique used here, the original C-mesh is cut
on the two vertical mesh lines passing through the trailing edge

Convergence curves. M=0.85,Inc.=0,CFL=9
4
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Patched grids A) -—---
Patched grids B) ~---
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FIG. 13. Convergence histories for single domain and patched grid multi-
domain computations. M., = 0.85, CFL = 9.
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FIG. 14. C-mesh with 257 X 33 points (partia view).

to form two subdomains: one upstream of the trailing edge and
the other downstream (Fig. 15B). The continuous matching
of the first kind with the interface condition (20) is applied. In
the third technique, the domain is divided into three parts (Fig.
15C): the near field upstream of the trailing edge equipped with
the same mesh as previoudly, its continuation downstream of the
trailing edge, and the far field using a coarse C-mesh matched
without continuity. The composite grid is shown in Fig. 16.
The convergence histories for the three techniques are shown
in Fig. 17. The convergence histories are quite different for the

x x X X
x
x
X X X
A trailing edge ) o o INTERFACE
o o o
o
o
o o o
X
X o o o
I DR
X I
x o o o
B trailing edge o o o
o o o
x
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INTERFACE
D1 e
D2
C ¢ f D3
b a

FIG. 15. Subdomain distributions: (A) One-domain treatment (continuous
matching of second kind); (B) Bidomain treatment (continuous matching of
first kind); (C) Tridomain treatment (continuous matching at line bfd and
discontinuous matching at line abcde; see Fig. 16).
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FIG. 16. Patched grid with mesh refinement (8084 points).

three techniques. Surprisingly, the third technique, which uses
the most subdomains, has the best convergence rate. The first
technique, which has a single domain and which uses anoncon-
servative interface condition, converges more slowly than the
other two. To reach aresidual of R = 10°®, the number of time
iterations of the one-domain technique is two times that of the
tridomain technique. The reason seems to be that the outside
subdomain has a coarse grid, which annihilates some waves
dominating the influence on the convergence rate. Thus, in-
creasing the number of subdomains does not necessarily delay
the convergence rate.

The pressure contours with different matching techniques
are shown in Fig. 18. The pressure distributions on the walls
aredisplayed in Fig. 19. We see that the third technique, which
involves mesh refinement, produces some oscillations near the
interface at the refined side. It is well known that mesh refine-
ment could induce oscillations. One example has been shown
in [6]. As has been pointed out by Kreiss [27], oscillations
near a boundary can be eliminated by adding some tangent
dissipation. Despite the oscillations, the third technique is al-
ways stable and gives a correct shock position (Fig. 19) which
depends strongly on the conservation of the numerical approxi-
mation. The one-domain technique, which uses a nonconserva-

Convergence curves. M=0.85,Inc.=1 deg.,CFL=9
2 T T T T T
Nd=1(A) —
1 Nd=2 (B) — A
Nd=3 (C) —

Logl0(R2)
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FIG.17. Convergence historiesfor three different multidomain treatments.
M. = 0.85 o = 1°, CFL = 9.
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L
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FIG. 18. Pressures contours (Ap = 0.05) with M., = 0.85, « = 1°, CFL = 9: Left, one domain (non-conservative); Middle, two subdomains (conservative);

Right, three subdomains (conservative).

M=0.85, Inc.=1 deg., CFL=9
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FIG. 19. Pressure distributions on the airfoil for three different multido-
main treatments. M. = 0.85, o = 1°, CFL = 9.

tive interface condition, gives a wrong shock position. It leads
to alift coefficient C;, = 0.424 which is much greater than the
expected and more accurate value C, = 0.376 reported in [28]
for avery fine grid. The bidomain technique yields C, = 0.366
and the tridomain technique leads to C, = 0.370.

FIG. 20. Patched grid for the two-element airfoil (partial view). Five
subdomains and 8340 cells.

7.4. Flow over a Two-Element Airfoil

Finaly, we compute a transsonic flow around a two-element
airfoil formed by two parallel NACAO0012 airfoils. They are
shifted by a distance equal to a half chord in both the paralel
and perpendicular directions. The free-stream Mach number
M.. = 0.7 and thereisno angle of attack. Previous computations
have been done either on aCartesian grid [10, 33] or an unstruc-
tured grid [20]. To the authors' knowledge, there is no other
computation of this test case based on curvilinear meshes.

The composite grid we useisdisplayed in Fig. 20. It ismade
up of five subdomains. One subdomain is located above the
upper airfail, another is beneath the lower airfoil, two others
are between the airfoils and the final one is downstream of the
trailing edge of the upper airfoil. The total number of cellsis
8340. The flow has been computed using our conservative
interface condition for patched grids. The convergence history
for CFL = 8 is shown in Fig. 21. The convergence is quite
regular and rapid for this type of problem. Only 1000 iterations
are needed to reach a |, residua on the density equation of
1075. The pressure distribution around the airfoils is shown in
Fig. 22. Figure 23 presents a comparison of the pressure con-

M=0.7,Inc.=0,CFL=8

Logl0(R2)

- 1 2 1 1 1 1 1
0 1000 2000
Iterations

3000

FIG. 21. Convergence history for the two-element airfoil. M., = 0.7,
CFL = 8.
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FIG. 22. Pressure distribution along the airfoils. M., = 0.7, CFL = 8: (A) C, aong the upper airfoil; (B) C, along the lower airfoil (location of the weak

shock, dashed line).

FIG. 23. Pressure contours: (A) Cartesian grid method of Clarke, Saas,
and Hassan (Ap = 0.025, mesh point number not mentioned); (B) cartesian grid
method of Morinishi (Ap = 0.05, 7743 mesh points); (C) present multidomain
method (Ap = 0.05, 8340 mesh points).

tours obtained by the present multidomain technique and those
of [10, 33], where centred Runge—Kutta methods are used on
Cartesian grids. Thethreeflow fields are quite similar. Notably,
a strong shock wave exists between the two airfoils. However,
there are two new features in the present results. First, the
strong shock is better resolved. Second, a weak shock appears
on the lower surface of the lower airfoil, as can be seen from
the pressure distribution (Fig. 22). Let us also note that the
quality of the results obtained in [20] with a method using an
unstructured grid is poor with respect to the methods using
Cartesian or patched curvilinear grids.

8. CONCLUDING REMARKS

Interface conditions which are conservative, GK S-stable and
ensure convergence to a steady state have been proposed for
computing compressible steady flows using implicit finite dif-
ference schemes on multiblock grids. The present multidomain
method deals with the cases of continuous as well as patched
grids with and without mesh refinement. Since it leads to inde-
pendent solutionsof implicit difference schemesin each subdo-
main, it can be easily implemented on parallel computers. Typi-
cal numerical results have been obtained for transonic flows
over single- and two-element airfoils. The comparison between
single domain and multidomain computations shows that do-
main decomposition does not necessarily delay the convergence
to steady state because it allows for a more efficient grid distri-
bution. The comparison with the results obtained by accurate
Cartesian grid methodsfor the two-element airfoil demonstrates
the accuracy of the present multidomain method.
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